Abstract

Cellular homeostasis relies on components of protein quality control including chaperones and proteases. In bacteria and eukaryotic organelles, Lon proteases play a critical role in removing irreparably damaged proteins and thereby preventing the accumulation of deleterious degradation-resistant aggregates. Gene expression, live-cell imaging, immunobiochemical, and functional complementation approaches provide conclusive evidence for Lon1 dual-targeting to chloroplasts and mitochondria. Dual-organellar deposition of Lon1 isoforms depends on both transcriptional regulation and alternative translation initiation via leaky ribosome scanning from the first AUG sequence context that deviates extensively from the optimum Kozak consensus. Organelle-specific Lon1 targeting results in partial complementation of Arabidopsis lon1-1 mutants, whereas full complementation is solely accomplished by dual-organellar targeting. Both the optimal and non-optimal AUG sequence contexts are functional in yeast and facilitate leaky ribosome scanning complementing the pim1 phenotype when the mitochondrial presequence is used. Bioinformatic search identified a limited number of Arabidopsis genes with Lon1-type dual-targeting sequence organization. Lon4, the paralog of Lon1, has an ambiguous presequence likely evolved from the twin presequences of an ancestral Lon1-like gene, generating a single dual-targeted protein isoform. We postulate that Lon1 and its subfunctional paralog Lon4 evolved complementary subsets of transcriptional and posttranscriptional regulatory components responsive to environmental cues for dual-organellar targeting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.