Abstract

In this short note alternative time domain boundary integral equations (TDBIE) for the scalar wave equation are formulated on a surface enclosing a volume. The technique used follows the traditional approach of subtracting and adding back relevant Taylor expansion terms of the field variable, but does not restrict this to the surface patches that contain the singularity only. From the divergence-free property of the added-back integrands, together with an application of Stokes' theorem, it follows that the added-back terms can be evaluated using line integrals defined on a cut between the surface and a sphere whose radius increases with time. Moreover, after a certain time, the line integrals may be evaluated directly. The results provide additional insight into the theoretical formulations, and might be used to improve numerical implementations in terms of stability and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.