Abstract

Summary1. Species with distributions that span a broad range of latitudes may have populations that exhibit distinct life history traits associated with environmental gradients. The majority of previous studies have indicated a strong association between spawning site selection by brook trout (Salvelinus fontinalis) and the presence of upwelling groundwater, but does this generalisation extend to the thermal regimes experienced at northern sites?2. We investigated the role of hyporheic flow in redd site selection by brook trout in a relatively high‐latitude boreal system. Hyporheic flows through streambed substratums can be dominated by groundwater or surface water and may be influenced by the presence of morphological features. For autumn spawners such as brook trout, embryos situated in microhabitats where hyporheic flow in the shallow substratum is groundwater dominant (i.e. warmer in winter) are likely to experience accelerated development rates relative to embryos in redds where there is downwelling surface water (i.e. colder in winter).3. We measured vertical hydraulic gradients (VHG) at the microhabitat scale and spatial and temporal variation in upwelling/downwelling flow and thermal regimes in brook trout spawning/incubation habitats. Additionally, we noted the proximity of redd sites to stream morphological features (e.g. riffle crests).4. Our results indicate that upwelling flow was not a decisive cue in redd site selection at the microhabitat scale (100 m) as an approximately equal number of redds were situated in microhabitats with upward flow as compared to microhabitats with downward flow through the redd. Redds situated on bedforms with convex longitudinal profiles (e.g. riffle crests, log steps) were associated with downward flow, whereas redds not immediately adjacent to these bedform features were associated with upward flow. Winter streambed temperatures confirmed that both sites with steady upwelling (i.e. warm incubation regime) and downwelling (i.e. cold incubation regime) were indeed selected by spawners.5. Our observations that spawners utilised both cold‐regime and warm‐regime sites suggests the existence of distinct reproductive tactics related to hyporheic flow patterns in this boreal system. As temperature is the dominant factor controlling rates of embryonic development, the use of spawning microhabitats with distinct thermal regimes implies substantial differences in the timing of hatching and the phenology of emergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.