Abstract

Streptococcus bovis and Selenomonas ruminantium grew in the presence of the glucose analog, 2-deoxyglucose (2-DG), but the cells no longer had high affinity glucose transport. In S. bovis, 2-DG resistance was correlated with a decrease in phosphoenolpyruvate (PEP)-dependent glucose phosphotransferase (PTS) activity. The 2-DG-selected S. bovis cells relied solely upon a low affinity, facilitated diffusion mechanism of glucose transport and a 2-DG-resistant glucokinase (ATP-dependent). The glucokinase activity of S. ruminantium was competitively inhibited by 2-DG, and the 2-DG selected cells continued to use PEP-dependent PTS as a mechanism of glucose transport. In this latter case, the 2-DG selected cells switched from a mannosephosphotransferase (enzyme II) that phosphorylated glucose, mannose, and 2-DG, but not alpha-methylglucose to a glucosephosphotransferase (enzyme II) that phosphorylated glucose and alpha-methylglucoside but not 2-DG or mannose. The glucosephosphotransferase (enzyme II) had a very low affinity for glucose and the transport kinetics were similar to the facilitated diffusion system of S. bovis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.