Abstract

Bacteriophage are ubiquitous in nature, yet many central aspects of host–phage biology have not been integrated into mathematical models. We propose a novel model of host–phage population dynamics that accounts for the decreased ability of phages to lyse hosts as hosts approach their carrying capacity. In contrast to existing predator–prey-like models, we find a parameter regime in which phages cannot invade a host-only system but, nonetheless, can stably coexist with hosts at lower densities. The finding of alternative stable states suggests clear linkages with observed life history strategies of phages. In addition, we solve a limiting case of the proposed model and show that conservative predator-prey like systems do not inevitably exhibit population cycles. Finally, we discuss possible extensions of the present model and scenarios for experimental testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.