Abstract
Arsenic (+3 oxidation state) methyltransferase (As3MT) catalyzes the methylation of trivalent arsenic (As(III)) to monomethylarsonate (MMA(V)) and dimethylarsinic acid (DMA(V)), and plays an important role in the detoxification of arsenicals. Here, we report the identification of two splicing variants of the human As3MT gene. One splicing variant was an exon-3 skipping (Δ3) form which produced a premature stop codon, and the other was an exon-4 and -5 skipping (Δ4,5) form which produced a 31.1kDa As3MT protein. In addition to the full-length mRNA of As3MT, Δ4,5 mRNAs were detected in HepG2, A549, HL60, K562, and HEK293 cells. The methyltransferase activity of the recombinant Δ4,5 As3MT and wild-type As3MT proteins purified from Escherichia coli was determined. Speciation analysis by HPLC–ICP-MS showed a clear peak of MMA(V) after incubation of As(III) with the wild-type As3MT protein, but not with the Δ4,5 As3MT protein. In addition, COS-7 cells transfected with Δ4,5 As3MT cDNA did not convert As(III) to MMA(V) or DMA(V). The lack of methyltransferase activity of Δ4,5 As3MT seems to be related to the deletion of an S-adenosylmethionine-binding site and a critical cysteine residue. These data suggest that the expression pattern of splicing variants of the As3MT gene may affect the capacity for arsenic methylation in cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.