Abstract

Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.

Highlights

  • Alternative splicing (AS) is the process by which a single premRNA is spliced in different ways to generate multiple mRNA transcripts

  • Alternative splicing can lead to the production of mRNA isoforms that are subject to degradation by the nonsense-mediated decay pathway, providing a mechanism to down-regulate gene expression without decreasing transcription

  • We developed a DNA microarray that can measure the alternative splicing of 352 cassette exons simultaneously and used it to probe alternative splicing in RNA extracted from embryos, the four larval stages, and adults

Read more

Summary

Introduction

Alternative splicing (AS) is the process by which a single premRNA is spliced in different ways to generate multiple mRNA transcripts. This process represents an important mechanism for post-transcriptional regulation of gene expression [1]. It has been estimated that as many as 70% of human genes undergo AS [2,3]. For Caenorhabditis elegans, it has been proposed that ,10% of genes undergo alternative splicing [4]. With the development of splicing-sensitive microarrays [8] there has been a recent increase in the information about global regulation of splicing in yeast, flies, mice and humans (for a review see [9])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call