Abstract

Receptors for the Fc portion of IgA (Fc alpha R) trigger important immunological elimination processes against IgA-coated targets. Investigation of human Fc alpha R (CD89) transcripts in neutrophils, eosinophils and a monocyte-like cell line, THP-1, with the use of reverse transcriptase PCR, Northern blotting and RNase protection analysis, has provided evidence in these cell types for at least two distinct transcripts generated by alternative splicing. The cDNAs derived from the two major transcripts of both neutrophils and eosinophils have been cloned and sequenced. For both cell types, the larger clone represents the previously described full-length receptor, whereas the second, shorter, splice variant lacks the entire second, membrane-proximal, Ig-like domain. Stable CHO-K1 transfectants have been obtained for both full-length and truncated variant neutrophil receptors. Whereas the full-length receptor is recognized by a panel of five anti-Fc alpha R monoclonal antibodies (mAbs), the shorter variant is bound weakly by only two of the antibodies, suggesting that the epitopes recognized by the majority of the mAbs lie at least in part in the second Ig-like domain of Fc alpha R. Both full-length and splice variant forms of the receptor bind secretory IgA, but the weak binding to serum IgA seen with the full-length receptor is not evident with the shorter variant. Alternative splicing might therefore serve as a means of diversifying Fc alpha R structure and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.