Abstract

BackgroundTelomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis in vivo, from the start point to tumor establishment.ResultsWe first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without in vitro telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants.ConclusionsTERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of constitutive and alternative splicing. Using the MDV T-cell lymphoma model, we identified a chTERT splice variant as a new NMD target.

Highlights

  • Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing

  • We investigated the alternative splicing of chicken TERT (chTERT) in the Marek’s disease virus (MDV) lymphomagenesis model

  • Complex profile of chTERT alternative transcripts We first compared the pattern of alternative chTERT transcript production from the MDV T- MSB-1 cell line with that of two other cell lines: the DT40 B cell line, and the epithelial LMH cell line

Read more

Summary

Introduction

Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. We aimed to use the Marek’s disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis in vivo, from the start point to tumor establishment. The telomeric enzyme complex, consisting of a telomerase reverse transcriptase (TERT) and an RNA template (TR), adds terminal telomeric repeats to the end of the chromosome, to maintain telomere length during cell proliferation [1,2]. Telomerase activity is highly regulated in lymphocytes, being expressed only in activated lymphocytes [5]. The hTR transcript is constitutively produced, whereas the production of hTERT is highly regulated at both the transcriptional and post-transcriptional levels [6,7]. The alpha isoform, corresponding to an in-frame deletion in the RT motif, appears to be a dominant inhibitor of telomerase activity [9,10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call