Abstract

Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-β-1,4-xylanase F1 gene (xynF1) and the endo-β-1,4-glucanase d gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-β-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes.Key points• AS events were identified in the lignocellulose-degrading enzyme genes of A. niger.• New β-1,4-xylanase and LPMO derived from AS events were characterized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call