Abstract
The first definition of space complexity for P systems was based on a hypothetical real implementation by means of biochemical materials, and thus it assumes that every single object or membrane requires some constant physical space. This is equivalent to using a unary encoding to represent multiplicities for each object and membrane. A different approach can also be considered, having in mind an implementation of P systems in silico; in this case, the multiplicity of each object in each membrane can be stored using binary numbers, thus reducing the amount of needed space. In this paper, we give a formal definition for this alternative space complexity measure, we define the corresponding complexity classes and we compare such classes both with standard space complexity classes and with complexity classes defined in the framework of P systems considering the original definition of space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.