Abstract

Lack of genetically stable and durable drought tolerant winter and spring barley genotypes is one of the main contributing to low and unpredictable yields in Kenya and other parts of the world despite annual release of new and high yielding varieties. Therefore, the study was set to identify genotypes exhibiting tolerance to drought through physiological and phenotypic approaches. A total of 32 genotypes were planted in split-plot arrangement in completely randomized design replicated thrice. Genotypes were maintained under 20% and 80% field capacities. Phenotypic and physiological data were collected, converted to ratios then analyzed on Genstat version 14.1 VSN International Ltd at a 5% level of significance. Significant differences were observed in winter and spring barley in terms of growth, tillering ability, grains formed per spike, 1000 seed weight and MSI (p < 0.05). Spring barley expressed higher tolerance to drought than winter barley especially in terms of height, number of grains per spike and seed weight. Water deficiency in cells and tissues might have altered and inhibited physiological and biochemical processes. The phenotypic and physiological methods corresponded and confirmed tolerance to drought in most winter and spring genotypes grown in Kenya.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.