Abstract

We propose an alternative scheme for programmable quantum gates specifically designed for polarization qubits of single photons. Unlike the conventional approach based on the scheme of Reck et al., we adopt the Hilbert-space expansion technique to enable a novel feature in the design of arbitrary quantum operations. We present a scheme that independently programs each matrix element of an operator. The proposed scheme can support the realization of many kinds of quantum operations. In anticipation of advances in the current quantum photonics technology, we assume the manipulation and detection of many photon qubits and propose a theoretical scheme to achieve n-polarization-qubit optical reconfigurable quantum gates by linear optical elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.