Abstract

Simulations of relativistic heavy-ion collisions within the three-fluid model employing a purely hadronic equation of state (EoS) and two versions of the EoS involving deconfinement transition are presented. The latter are an EoS with the first-order phase transition and that with a smooth crossover transition. The model setup is described in detail. The analysis is performed in a wide range of incident energies 2.7 GeV $< \sqrt{s_{NN}} <$ 39 GeV in terms of the center-of-mass energy. Results on proton and net-proton rapidity distributions are reported. Comparison with available data indicate certain preference of the crossover EoS. It is found that predictions within deconfinement-transition scenarios exhibit a "peak-dip-peak-dip" irregularity in the incident energy dependence of the form of the net-proton rapidity distributions in central collisions. This irregularity is a signal of deconfinement onset occurring in the hot and dense stage of the nuclear collision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.