Abstract

Wild-type mercuric ion reductase (CCCC enzyme) possesses four cysteines in each of its Hg(II) binding sites, a redox-active pair and a C-terminal pair. Mutation of the C-terminal cysteines to alanines (CCAA enzyme) leads to a loss of steady-state mercuric ion reductase activity using Hg(SR)2 substrates. However, CCCC and CCAA enzymes exhibit an equally high rate of binding and turnover using HgBr2 as substrate under pre-steady-state conditions [Engst and Miller (1998) Biochemistry 37, 11496-11507.]. Since the ligands in these HgX2 substrates differ both in size and in affinity for Hg(II), one or both of these properties may contribute to their different reactivities with CCAA enzyme. To further explore the importance of these two properties, we have examined the pre-steady-state reactions of CCCC and CCAA with Hg(CN)2, which has small, high-affinity ligands, and with Hg(Cys)2, which has bulky, high-affinity ligands. The results indicate that HgX2 substrates with small ligands can rapidly access the redox-active cysteines in the absence of the C-terminal cysteines, but those with large ligands require the C-terminal cysteines for rapid access. In addition, it is concluded that the C-terminal cysteines play a critical role in removing the high-affinity ligands before Hg(II) reaches the redox-active cysteines in the inner active site, since direct access of HgX2 substrates with high-affinity ligands leads to formation of an inhibited complex. Consistent with the results, both a narrow channel leading directly to the redox-active cysteines and a wider channel leading to the redox-active cysteines via initial contact with the C-terminal cysteines can be identified in the structure of the enzyme from Bacillus sp. RC607.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.