Abstract
The breed-and-burn fast reactor (B&BR) is a unique fast reactor concept that offers attractive characteristics in terms of core performance and non-proliferation aspects. The B&BR has the ability to breed its own fuel and use it in situ to achieve an extremely long life. In order to achieve the breed-and-burn condition, the neutron economy should be very good. In this work, a compact sodium-cooled B&BR is investigated from the physics point of view. In a compact size B&BR which usually has a higher neutron leakage, a good neutron reflector is essential to maintain the neutron economy. In the conventional sodium-cooled B&BRs, a steel reflector such as HT-9 is usually adopted as reflector material. In the current work, various alternative reflector materials such as pure lead, lead–bismuth eutectic (LBE), lead–magnesium eutectic (LME), PbO, MgO, Ni, and HT-9 are investigated from the neutronics perspectives. Several characterizations including the reflecting performance, core neutron spectrum, core leakage, power distribution, and sodium coolant void reactivity (CVR) have been performed to understand the behavior of each reflector material. The impact of the coarse lattice reflector configuration on the reflector performance and CVR has also been analyzed. In addition, the impact of the reflector material on the gas expansion module (GEM) worth has been investigated, too. Finally, it was concluded that lead-based reflectors such as LBE, LME, and PbO, are promising alternative reflector candidates for a compact B&BR. The calculations were all done by using a continuous energy Monte Carlo code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.