Abstract
ABSTRACT This article builds classical and Bayesian testing procedures for choosing between non nested multivariate regression models. Although there are several classical tests for discriminating univariate regressions, only the Cox test is able to consistently handle the multivariate case. We then derive the limiting distribution of the Cox statistic in such a context, correcting an earlier derivation in the literature. Further, we show how to build alternative Bayes factors for the testing of nonnested multivariate linear regression models. In particular, we compute expressions for the posterior Bayes factor, the fractional Bayes factor, and the intrinsic Bayes factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.