Abstract

Experiments were conducted to compare the patterns, mechanisms, and costs of predator avoidance behavior among larvae of five species of mayflies that co—occur with the predatory stoneflies, Megarcys signata and Kogotus modestus in western Colorado streams. Mayfly drift dispersal behavior, use of high vs. low food (periphyton or detritus) patches, microhabitat use, positioning, and activity periodicity were observed in the presence and absence of predators in circular flow—through chambers using natural stream water. Also, distances from predators at which prey initiated escape responses were compared among prey and predator species. Costs of predator avoidance behavior were assessed by measuring short—term (24 h) feeding rates of mayflies in the presence or absence of predatory stoneflies whose mouthparts were immobilized (glued) to prevent feeding. The intensity and associated costs of predator avoidance behavior of mayfly species were consistent with their relative rates of predation by stoneflies. Megarcys consumes overwintering generation Baetis bicaudatus > Epeorus longimanus > Cinygmula = Ephemerella; Kogotus consumes summer generation Baetis > Epeorus deceptivus = Cinygmula; Megarcys eats more mayflies than Kogotus. While Megarcys induced drift by Baetis, Epeorus, and Cinygmula, this disruptive predator avoidance behavior only reduced food intake by Baetis and Epeorus. The morphologically defended mayfly species, Ephemerella, neither showed escape behavior from Megarcys, nor any cost of its antipredatory posturing behavior. Only Baetis responded by drifting from Kogotus. No mayfly species shifted microhabitats or spent less time on high—food patches in the presence of foraging stoneflies. However, predators enhanced the nocturnal periodicity of Baetis drift, which was negligible in the absence of stoneflies as long as food was abundant. Lack of food also caused some microhabitat and periodicity shifts and increased the magnitude of both day and night drift of Baetis. Thus, Baetis took more risks of predation by visual, drift—feeding fish not only in the presence of predatory stoneflies, but also when food was low or they were hungry. All other mayflies were generally nocturnal in their use of rock surfaces, as long as food was abundant. Finally, the distances at which different mayfly species initiated acute escape responses were also consistent with relative rates of predation. This study demonstrates alternative predator avoidance syndromes by mayfly species ranging from an initial investment in constitutive morphological defenses (e.g., Ephemerella) to induced, energetically costly predator avoidance behaviors (e.g., Baetis). Although the costs of Ephemerella's constitutive defense are unknown, experiments show that prey dispersal is the mechanism underlying fecundity costs of induced responses by Baetis to predators, rather than microhabitat shifts to less favorable resources or temporal changes in foraging activity. A conceptual model suggests that contrasting resource acquisition modes may account for the evolution and maintenance of alternative predator avoidance syndromes along a continuum from Baetis (high mobility) to heptageniids (intermediate mobility) to Ephemerella (low mobility). Prey dispersal (swimming) to avoid capture results in reduction of otherwise high fecundity by Baetis, which trades off morphological defense for enhanced ability to acquire resources. Thus, improved foraging efficiency is the selection pressure maintaining the highly mobile life style in Baetis, which increases resource acquisition and fecundity, offsetting the high mortality costs associated with this behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call