Abstract
Philasterides dicentrarchi causes a severe disease in turbot, and at present there are no drugs available to treat infected fish. We have previously demonstrated that, in addition to the classical respiratory pathway, P. dicentrarchi possesses an alternative mitochondrial respiratory pathway that is cyanide-insensitive and salicylhydroxamic acid (SHAM)-sensitive. In this study, we found that during the initial phase of growth in normoxia, ciliate respiration is sensitive to the natural polyphenol resveratrol (RESV) and to Antimycin A (AMA). However, under hypoxic conditions, the parasite utilizes AMA-insensitive respiration, which is completely inhibited by RESV and by the antioxidant propyl gallate (PG), an alternative oxidase (AOX) inhibitor. PG caused significantly dose-dependent inhibition of the in vitro growth of the parasite under normoxia and hypoxia and an over-expression of heat shock proteins of the Hsp70 subfamily. RESV and PG may affect the protective role of the AOX against mitochondrial oxidative stress, leading to an impaired mitochondrial membrane potential and mitochondrial dysfunction, which the parasite attempts to neutralize by increasing the expression of Hsp70. In view of the antiparasitic effects induced by AOX inhibitors and the absence of AOX in their host, this enzyme constitutes a potential target for the development of new drugs against scuticociliatosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.