Abstract

The management of cyanobacteria and potential exposure to associated biotoxins requires the allocation of scarce resources across a range of freshwater resources within various jurisdictions. Cost effective and reliable methods for sample processing and analysis form the foundation of the protocol yielding reliable data from which to derive important decisions. In this study the utilization of new methods to collect, process and analyze samples enhanced our ability to evaluate cyanobacterial populations. Extraction of phycocyanin using the single freeze thaw method provided more accurate and precise measurements (CV 4.7% and 6.4%), offering a simple and cost-effective means to overcome the influence of morphological variability. In-vacuo concentration of samples prior to ELISA analysis provided a detection limit of 0.001 μg·L−1 MC. Fractionation of samples (−1) = −0.279 + (1.368 ∗ Log PC (μg·L−1) while in an Aphanizomemon spp. dominant system Log MC (ng·L−1) = 0.385 + (0.449 ∗ Log PC (μg·L−1). These methods and sampling protocol could be used in other aquatic systems across a broader regional landscape to estimate the levels of microcystins.

Highlights

  • Cyanobacteria have gained attention from professionals and the public in light of the biotoxins they produce

  • Fractionation of samples (

  • Linear regression revealed that dissolved microcystins were more closely associated with total microcystins in the

Read more

Summary

Introduction

Cyanobacteria have gained attention from professionals and the public in light of the biotoxins they produce. To assess and quantify this risk, a variety of monitoring programs and protocols have been developed tailored to specific objectives. Within this paradigm efficient allocation of personnel and financial resources becomes paramount, and can be guided via a metric based framework including those for recreational waters [1] [2] and drinking water supplies [3] [4]. The purpose of this study was to evaluate 1) the single freeze-thaw (SFT) method for the extraction of phycocyanin prior to fluorometric analysis, 2) sample preparation using in-vacuo evaporation prior to toxin analysis and 3) the use of size fractionated samples to describe cyanobacterial populations by conducting seasonal surveys of cyanobacterial populations in two surface water supplies

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call