Abstract

Thermal balance is paramount to human comfort and safety. To better understand the effects of the material and environment, a modified sweating-hot-plate test was used to incorporate environmental parameters such as the ventilation and microclimate thickness. It was found that at wind speeds ≤ 0.5 m/s, the environment has the most significant effect on the insulation. However, at an increased wind speed (1.3 m/s), the construction of the material has a large influence on the insulation of the system. At a low metabolic rate, the heat storage can be compensated for through dry heat loss; but, at a higher metabolic rate, substantial differences in the sweating rates are required based on the material and environment. The various aspects of the environment wind speed, microclimate thickness, and ventilation are crucial, but, in certain combinations, the material can have a significant impact as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call