Abstract

ABSTRACT In forest management surveys, the mean of a variable of interest (Y) in a population composed of N equal area spatial compact elements is increasingly estimated from a model linking Y to an auxiliary vector X known for all elements in the population. It is also desired to have synthetic estimates of the mean of Y in spatially compact domains (forest stands) with no or at most one sample-based observation of Y. We develop three alternative estimators of mean-squared errors (MSE) that reduce the risk of a serious underestimation of the uncertainty in a synthetic estimate of a domain mean in cases where the employed model does not accounts for domain effects nor spatial autocorrelation in unobserved residual errors. Expansions of the estimators including anticipated effects of a spatial autocorrelation in residual errors are also provided. Simulation results indicate that the conventional model-dependent (MD) population-level estimator of variance in a synthetic estimate of a domain mean underestimates uncertainty by a wide margin. Our alternative estimators mitigated, in settings with weak to moderate domain effects and relatively small sample sizes, to a large extent, the problem of underestimating uncertainty. We demonstrate applications with examples from two actual forest inventories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.