Abstract

Unlimited cellular proliferation depends on counteracting the telomere attrition that accompanies DNA replication. In human cancers this usually occurs through upregulation of telomerase activity, but in 10-15% of cancers - including some with particularly poor outcome - it is achieved through a mechanism known as alternative lengthening of telomeres (ALT). ALT, which is dependent on homologous recombination, is therefore an important target for cancer therapy. Although dissection of the mechanism or mechanisms of ALT has been challenging, recent advances have led to the identification of several genes that are required for ALT and the elucidation of the biological significance of some phenotypic markers of ALT. This has enabled development of a rapid assay of ALT activity levels and the construction of molecular models of ALT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.