Abstract

Boussinesq‐type equations can be used to model the nonlinear transformation of surface waves in shallow water due to the effects of shoaling, refraction, diffraction, and reflection. Different linear dispersion relations can be obtained by expressing the equations in different velocity variables. In this paper, a new form of the Boussinesq equations is derived using the velocity at an arbitrary distance from the still water level as the velocity variable instead of the commonly used depth‐averaged velocity. This significantly improves the linear dispersion properties of the Boussinesq equations, making them applicable to a wider range of water depths. A finite difference method is used to solve the equations. Numerical and experimental results are compared for the propagation of regular and irregular waves on a constant slope beach. The results demonstrate that the new form of the equations can reasonably simulate several nonlinear effects that occur in the shoaling of surface waves from deep to shallow w...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call