Abstract

For a drug to be approved for human use, its safety and efficacy need to be evidenced through clinical trials. At present, patient recruitment is a major bottleneck in conducting clinical trials. Pharma and contract research organisations (CRO) are actively looking into optimisation of different aspects of patient recruitment. One of the avenues to approach this business problem is to improve the quality of selection of investigators/sites at the start of a trial. This study builds upon previous work that used Grammatical Evolution (GE) to evolve classification models to predict the future patient enrolment performance of investigators/sites considered for a trial. Selection of investigators/sites, depending on the business context, could benefit from the use of either especially conservative or more liberal predictive models. To address this business need, decision-tree type classifiers were evolved utilising different fitness functions to drive GE. The functions compared were classical accuracy, balanced accuracy and F-measure with different values of parameter beta. The issue of models’ generalisability was addressed by introduction of a validation procedure. The predictive power of the resultant GE-evolved models on the test set was compared with performance of a range of machine learning algorithms widely used for classification. The results of the study demonstrate that flexibility of GE induced classification models can be used to address business needs in the area of patient recruitment in clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call