Abstract
VTT has developed a straightforward and fast process to fabricate edgeless (active edge) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process avoids all slow process steps, such as polysilicon growth, planarization and additional ICP-etching. We have successfully fabricated 150 μm thick p-on-n and n-on-n prototypes of edgeless detectors having dead layers at the edge with a thickness below a micron. Fabrication was done on high resistivity n-type FZ-silicon wafers. The prototypes include 5×5 and 1×1 cm 2 edgeless microstrip detectors with DC-, FOXFET- and PT-couplings. In addition 1.4×1.4 cm 2 Medipix2 edgeless pixel detectors were also fabricated. This paper presents leakage current, capacitance and breakdown voltage measurements of different DC-coupled microstrip designs and compares them with respect to the active edge distance and polarity of the detector. The active edge distances were 20, 50 and 100 μm from the strips. Electrical characterization of these detectors on the wafer level gave promising results. A good uniformity in the measured parameters was observed for the inner strips. The parameters of the adjacent strip to the edge showed a dramatic dependence on the active edge distance. Leakage current and capacitance of the inner microstrips were 50–70 nA/cm 2 and 580–660 pF/cm 2 at, respectively, 40 V reverse bias for the p-on-n. For the n-on-n design these parameters were 116–118 nA/cm 2 and 930–960 pF/cm 2. The breakdown voltages were above 150 V for p-on-n prototypes and increased as a function of active edge distance. To fully deplete the p-on-n detectors required twice as much reverse bias as was needed for the n-on-n detectors, i.e. 13–28 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.