Abstract

A new approach to estimating environmental contours has recently been proposed, where the contours are estimated in the original physical space by Monte Carlo simulations from the joint distribution directly rather than applying the Rosenblatt transformation. In this paper, the new and the traditional approach to estimating the contours are presented and the assumptions on which they are based are discussed. The different results given by these two methods are then compared in a number of case studies. Simultaneous probability density functions are fitted to the joint distribution of significant wave height and wave period for selected ocean locations and, for each area, environmental contours are estimated for both methods. The chosen locations are characterised by different wave climates. Thus, the practical consequences of the choice of approach are assessed. Particular attention is given to mixed sea systems, i.e. a combination of wind sea and swell. In these situations, the new approach for environmental contours may fail to identify realistic conditions along some parts of the contours while for other wave conditions the contours are quite similar. The paper also briefly discusses possible ways of amending the new approach to estimating the contours to obtain more realistic conditions all along the contour lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.