Abstract

Falling solid particle receivers can enable increased working-fluid temperatures for central receiver power plants, but will need to have high thermal efficiencies. This can increase power-cycle efficiencies and reduce thermal storage costs. A previous north- facing solid particle receiver (SPR) design was estimated to have a thermal efficiency of 72.3%. This design included a large aperture (17 m x 17 m), a slight downward facing nod (20°), a high-sloping ceiling to accommodate the beam angles from the closest heliostats, and particles released near the back wall of the receiver. Receiver design modifications have been introduced to achieve a thermal efficiency of >90% as stated in the SunShot initiative. Design changes including a reduced aperture size, bottom lip on aperture, increased nod angle, deeper cavity, reduced ceiling slope angles, and more specular walls resulted in higher thermal efficiency designs.DELSOL was used to determine viable receiver dimensions, aperture sizes, and nod angles for a desired power output. The optimum receiver parameters were 10.63 m x 10.63 m aperture size, 50° nod angle, and a tower height of 194.7 m. The new aperture size had a higher concentration ratio and provided maximum incident power on the particles with minimum radiative loss. An aperture with a lip, nod angle of 50°, and extended back wall prevented buoyant hot air from leaving the receiver. A ceiling with higher reflectivity allowed more incident radiation to be reflected onto the particles rather than absorbed and thermally re-emitted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.