Abstract
This research compares several approaches to inference in the multinominal profit model, based on two Monte Carlo experiments for a seven choice model. The methods compared are the simulated maximum likelihood estimator using the GHK recursive probability simulator, the method of simulated moments estimator using the GHK recursive simulator and kernel-smoothed frequency simulators, and posterior means using a Gibbs sampling-data augmentation algorithm. Overall, the Gibbs sampling algorithm has a slight edge, with the relative performance of MSM and SML based on the GHK simulator being difficult to evaluate. The MSM estimator with the kernel-smoothed frequency simulator is clearly inferior. Copyright 1994 by MIT Press.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.