Abstract
Antimony Selenide (Sb2Se3) thin-film solar cell configurations with alternative buffer layers are proposed to improve the efficiency by minimizing open‐circuit voltage offset (Voc,offset). The conduction band offsets have been optimized not only at absorber/buffer (ΔEC‐BA) but also at buffer/transparent conductive oxide (ΔEC-TB). Voltage‐independent recombination rates in the quasi‐neutral region (Rb0), the space‐charge region (Rd0), and at the absorber/buffer interface (Ri0) of the Sb2Se3 solar cells with various configurations are individually modelled. The development of cell configurations causes to decrease the Ri0, Rd0, and Rb0, consequently reducing the Voc,offset. It is found that the solar cell configuration of Mo/MoSe2/Sb2Se3/TiO2/ZnO0.4S0.6/Zn0.93Mg0.07O/ZnO:Al is suitable with the ΔEC‐BA of 0.29 eV and ΔEC‐TB of −0.2 eV, therefore considerably reducing Voc,offset to approximately 0.52 V, and improving the efficiency to 15.46%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.