Abstract

The $\mathcal{KS}$ map is revisited in terms of an $S^1$-action in $T^*\mathbb{H}_0$ with the bilinear function as the associated momentum map. Indeed, the $\mathcal{KS}$ transformation maps the $S^1$-fibers related to the mentioned action to single points. By means of this perspective a second twin-bilinear function is obtained with an analogous $S^1$-action. We also show that the connection between the 4-D isotropic harmonic oscillator and the spatial Kepler systems can be done in a straightforward way after regularization and through the extension to 4 degrees of freedom of the Euler angles, when the bilinear relation is imposed. This connection incorporates both bilinear functions among the variables. We will show that an alternative regularization separates the oscillator expressed in Projective Euler variables. This setting takes advantage of the two bilinear functions and another integral of the system including them among a new set of variables that allows to connect the 4-D isotropic harmonic oscillator and the planar Kepler system. In addition, our approach makes transparent that only when we refer to rectilinear solutions, both bilinear relations defining the $\mathcal{KS}$ transformations are needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call