Abstract

In this paper, we present an alternative solution of consolidation at constant rate of deformation (CRD). Governing equation of CRD consolidation is formulated considering excess pore water pressure as primary variable. Formulation of the governing equation is done for soil as linear as well as nonlinear materials. An analytical solution to the governing equation is derived which consists of transient state and steady state components. The solution derived herein yields profile of excess pore water pressure distribution with depth at any time during the test. The present paper analyzes the excess pore water pressure distribution profile during CRD consolidation and factors affecting it in detail. Analysis of the obtained solution indicates the existence of moving boundary condition within the test specimen at early stage of the test where transient state condition prevails. It also indicates that the pore water pressure ratio affects significantly the excess pore water distribution profile, in turn, average value of pore water pressure and average effective stress in the specimen. An expression for consolidation parameters for steady state condition are derived using the present solution. Further, evolution of excess pore water pressure at the base of CRD consolidation test specimen during the test is predicted for normally consolidated as well as for over consolidated soils at different rates of deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call