Abstract

In the central nervous system, gliomas are the most common, but complex primary tumors. Genome-based molecular and clinical studies have revealed different classifications and subtypes of gliomas. Neuroradiological approaches have non-invasively provided a macroscopic view for surgical resection and therapeutic effects. The connectome is a structural map of a physical object, the brain, which raises issues of spatial scale and definition, and it is calculated through diffusion magnetic resonance imaging (MRI) and functional MRI. In this study, we reviewed the basic principles and attributes of the structural and functional connectome, followed by the alternations of connectomes and their influences on glioma. To extend the applications of connectome, we demonstrated that a series of multi-center projects still need to be conducted to systemically investigate the connectome and the structural–functional coupling of glioma. Additionally, the brain–computer interface based on accurate connectome could provide more precise structural and functional data, which are significant for surgery and postoperative recovery. Besides, integrating the data from different sources, including connectome and other omics information, and their processing with artificial intelligence, together with validated biological and clinical findings will be significant for the development of a personalized surgical strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call