Abstract

Abstract2D transition‐metal dichalcogenide (TMDC) materials are promising candidates with excellent thermoelectric (TE) properties owing to their low dimensionality in electronic and phonon transport. However, the considerable coupling of the Seebeck coefficient and electrical conductivity in such TE materials eventually results in the limit of the TE power factor increase, which severely hinders potential TE device applications. Herein, an alternative approach is demonstrated for breaking the strong coupling between the Seebeck coefficient and electrical conductivity in single TE materials by adopting a novel stacked PtSe2/PtSe2 homostructure. By alternately piling low‐resistance (LR) PtSe2 (3 nm) onto high‐resistance (HR) PtSe2 (2 nm) as one unit, the Seebeck coefficient and electrical conductivity of such stacked homostructures can be greatly enhanced with slightly improved electrical conductivity, ultimately resulting in a TE power factor in three‐unit‐stacked homostructures that is ≈1,648% higher than that of a single PtSe2 (15 nm) layer with the same thickness. This enhancement is attributed to an independent increase in the Seebeck coefficient, which depends on the interface among the LR and HR PtSe2 layers. The findings pave the way for a method that, unlike power factor optimization in conventional thermoelectric materials, can only utilize the Seebeck coefficient and electrical conductivity of each layer in a stacked homostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.