Abstract

Alternating vector addition systems are obtained by equipping vector addition systems with states (VASS) with ‘fork’ rules, and provide a natural setting for infinite-arena games played over a VASS. Initially introduced in the study of propositional linear logic, they have more recently gathered attention in the guise of multi-dimensional energy games for quantitative verification and synthesis.We show that establishing who is the winner in such a game with a state reachability objective is 2-ExpTime-complete. As a further application, we show that the same complexity result applies to the problem of whether a VASS is simulated by a finite-state system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.