Abstract

This work describes the depolymerization of poly(vinyl acetate-alt-sulfur dioxide) (PVAS) as initiated by chemical and mechanical stimuli. In recent years, macromolecules that are able to depolymerize in response to specific stimuli have been highly sought because of their ability to amplify signal for sensing and drug delivery. Examples include self-immolative polymers from alkoxyphenol derivatives and polyaldehydes. We show here that alternating copolymers of sulfur dioxide and vinyl acetate are able to undergo similar depolymerization into their monomer components in response to various chemical and mechanical stimuli. Certain vinyl monomers such as vinyl acetate are able to polymerize with sulfur dioxide in a perfectly alternating manner, and the resulting copolymer possesses a low ceiling temperature. We show that this polymer is able to break down into its monomer components when subjected to UV/acetone, various Reactive Oxygen Species (ROS), and ultrasonication. In the case of UV, the acetone reacted via a Norrish reaction to produce free radicals that caused clean monomer production. For ROS, the polymer showed reactivity to both oxidizing and radical-containing ROS. Through kinetic studies, these polymers were shown to proceed via a two-part, first-order kinetic model with a fast initiation phase and a slow depolymerization phase. Finally, the polymers were subjected to probe ultrasonication, and depolymerization occurred as well. Most tellingly, the polymer again showed a fast initiation step and continued to depolymerize even after ultrasonication stopped. This class of polymers shows potential for drug delivery in response to both endogenous chemical and externally-applied mechanical cues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.