Abstract

We report the formation of oligomers with side-chain sequence control using ruthenium-catalyzed alternating ring-opening metathesis polymerization (AROMP). These oligomers are prepared through sequential, stoichiometric addition of bicyclo[4.2.0]oct-1(8)-ene-8-carboxamide (monomer A) at 85 °C and cyclohexene (monomer B) at 45 °C to generate sequences up to 24 monomeric units composed of (A-alt-B)n and (A′-alt-B)n microblocks, where n ranges from 1 to 6. Herein, monomer A has an alkyl side chain, and monomer A′ has a glycine methyl ester side chain. Increasing microblock size from one to six results in an increasing water contact angle on spin-coated thin films, despite the constant ratio of hydrophilic and hydrophobic moieties. However, a disproportionately high contact angle was observed when n equals 2. Thus, the unique all-carbon backbone formed in the AROMP of bicyclo[4.2.0]oct-1(8)-ene-8-carboxamides and cyclohexene provides a platform for the nontemplated preparation of materials with specific sequences of side chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.