Abstract

Lightweight electromagnetic (EM) wave absorbers made of ceramics have sparked tremendous interest for applications in EM wave interference protection at high temperatures. However, EM wave absorption by pure ceramics still faces huge challenges due to the lack of efficient EM wave attenuation modes. Inspired by the energy dissipation mechanism during fracture of lobster shells with a soft and stiff multilayered structure, we fabricate a high-performance EM wave absorption ceramic aerogel composed of an alternating multilayered wave transparent Si3N4 (N) layer and wave absorption SiC (C) layer by a simple restack method. The obtained N/C aerogel shows ultralow density (∼8 mg/cm3), broad effective absorption bandwidth (8.4 GHz), strong reflection loss (-45 dB) at room temperature, and excellent EM wave absorption performance at high temperatures up to 1000 °C. The attenuation of EM wave mainly results from a "reflection-absorption-zigzag reflection" process caused by the alternating multilayered structure. The superior absorption performance, especially at high temperatures, makes the N/C aerogel promising for next-generation wave absorption devices served in high-temperature environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call