Abstract

Millimeter wave (mmWave) communications has been regarded as a key enabling technology for 5G networks. In contrast to conventional multiple-input-multiple-output (MIMO) systems, precoding in mmWave MIMO cannot be performed entirely at baseband using digital precoders, as only a limited number of signal mixers and analog-to-digital converters (ADCs) can be supported considering their cost and power consumption. As a cost-effective alternative, a hybrid precoding transceiver architecture, combining a digital precoder and an analog precoder, has recently received considerable attention. However, the optimal design of such hybrid precoders has not been fully understood. In this paper, treating the hybrid precoder design as a matrix factorization problem, effective alternating minimization (AltMin) algorithms will be proposed for two different hybrid precoding structures, i.e., the fully-connected and partially-connected structures. In particular, for the fully-connected structure, an AltMin algorithm based on manifold optimization is proposed to approach the performance of the fully digital precoder, which, however, has a high complexity. Thus, a low-complexity AltMin algorithm is then proposed, by enforcing an orthogonal constraint on the digital precoder. Furthermore, for the partially-connected structure, an AltMin algorithm is also developed with the help of semidefinite relaxation. For practical implementation, the proposed AltMin algorithms are further extended to the broadband setting with orthogonal frequency division multiplexing (OFDM) modulation. Simulation results will demonstrate significant performance gains of the proposed AltMin algorithms over existing hybrid precoding algorithms. Moreover, based on the proposed algorithms, simulation comparisons between the two hybrid precoding structures will provide valuable design insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.