Abstract
Alternating magnetic field (AMF) is a promising methodology for further improving magnetic single-atom catalyst (SAC) activity toward oxygen evolution reaction (OER). Herein, the anchoring of Co single atoms on MoS2 support (Co@MoS2), leading to the appearance of in-plane room-temperature ferromagnetic properties, is favorable for the parallel spin arrangement of oxygen atoms when a magnetic field is applied. Moreover, field-assisted electrocatalytic experiments confirmed that the spin direction of Co@MoS2 is changing with the applied magnetic field. On this basis, under AMF, the active sites in ferromagnetic Co@MoS2 were heated by exploiting the magnetic heating generated from spin polarization flip of these SACs to further expedite OER efficiency, with overpotential at 10 mA cm-2 reduced from 317 mV to 250 mV. This work introduces a feasible and efficient approach to enhance the OER performance of Co@MoS2 by AMF, shedding some light on the further development of magnetic SACs for energy conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.