Abstract

We define and study multivariate exponential functions, symmetric with respect to the alternating group A_n, which is a subgroup of the permutation (symmetric) group S_n. These functions are connected with multivariate exponential functions, determined as the determinants of matrices whose entries are exponential functions of one variable. Our functions are eigenfunctions of the Laplace operator. By means of alternating multivariate exponential functions three types of Fourier transforms are constructed: expansions into corresponding Fourier series, integral Fourier transforms, and multivariate finite Fourier transforms. Alternating multivariate exponential functions are used as a kernel in all these Fourier transforms. Eigenfunctions of the integral Fourier transforms are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.