Abstract

Alternating Directions Implicit (ADI) integration is an operator splitting approach to solve parabolic and elliptic partial differential equations in multiple dimensions based on solving sequentially a set of related one-dimensional equations. Classical ADI methods have order at most two, due to the splitting errors. Moreover, when the time discretization of stiff one-dimensional problems is based on Runge–Kutta schemes, additional order reduction may occur. This work proposes a new ADI approach based on the partitioned General Linear Methods framework. This approach allows the construction of high order ADI methods. Due to their high stage order, the proposed methods can alleviate the order reduction phenomenon seen with other schemes. Numerical experiments are shown to provide further insight into the accuracy, stability, and applicability of these new methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.