Abstract
This paper presents an efficient algorithm for solving a balanced regularization problem in the frame-based image restoration. The balanced regularization is usually formulated as a minimization problem, involving an l(2) data-fidelity term, an l(1) regularizer on sparsity of frame coefficients, and a penalty on distance of sparse frame coefficients to the range of the frame operator. In image restoration, the balanced regularization approach bridges the synthesis-based and analysis-based approaches, and balances the fidelity, sparsity, and smoothness of the solution. Our proposed algorithm for solving the balanced optimal problem is based on a variable splitting strategy and the classical alternating direction method. This paper shows that the proposed algorithm is fast and efficient in solving the standard image restoration with balanced regularization. More precisely, a regularized version of the Hessian matrix of the l(2) data-fidelity term is involved, and by exploiting the related fast tight Parseval frame and the special structures of the observation matrices, the regularized Hessian matrix can perform quite efficiently for the frame-based standard image restoration applications, such as circular deconvolution in image deblurring and missing samples in image inpainting. Numerical simulations illustrate the efficiency of our proposed algorithm in the frame-based image restoration with balanced regularization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.