Abstract
The alternating direction implicit (ADI) method is a highly efficient technique for solving multi-dimensional dependent initial-boundary value problems on rectangles. Earlier we have used the ADI technique in conjunction with orthogonal spline collocation (OSC) for discretization in space to solve parabolic problems on rectangles and rectangular polygons. Recently, we extended applications of ADI OSC schemes to the solution of parabolic problems on some non-rectangular regions that allow for consistent nonuniform partitions. However, for many regions, it is impossible to construct such partitions. Therefore, in this paper, we show how to extend our approach further to solve parabolic problems on some non-rectangular regions using inconsistent uniform partitions. Numerical results are presented using piecewise Hermite cubic polynomials for spatial discretizations and our ADI OSC scheme for parabolic problems to demonstrate its performance on several regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.