Abstract

Metal-insulator-metal systems are discussed in which the insulator is highly doped and in which Schottky barriers exist at the metal-insulator interface. An equivalent circuit for the system is proposed and the ac electrical characteristics derived. It is shown that the capacitance is extremely temperature and frequency dependent. At high frequencies or low temperatures the capacitance is thickness dependent and equal to the geometric capacitance. At low frequencies and high temperatures it is thickness independent and equal to the Schottky barrier capacitance, which is determined by the doping density. Several methods of determining the activation energy of the donor centers from experimental capacitance versus frequency and temperature curves are suggested. The parallel equivalent conductance is also shown to be extremely frequency and temperature sensitive. It is found to have a pronounced maximum in both cases, which increases in magnitude and occurs at higher temperatures the thicker the insulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.