Abstract

A detailed study of the difference in reactivity of the copolymerization reactions of styrene oxidevs.propylene oxide with carbon dioxide utilizing binary (salen)cobalt(III) catalyst systems to provide perfectly alternating copolymers is reported. This investigation focuses on the discrepancy exhibited by these two terminal epoxides for the preference for C–O bond cleavage during the ring-opening process. It was found that the nucleophilic ring-opening of styrene oxide occurs predominantly at the methine Cα–O bond which leads to an inversion of configuration at the methine carbon center. This tendency results in a significantly lower reactivity as well as a deterrent for synthesizing stereoregular poly(styrene carbonate) when compared to the propylene oxide/CO2 process. The chiral environment about the metal center had a notable effect on the regioselectivity of the ring-opening step for styrene oxide, with the methylene Cβ–O bond being preferentially cleaved. Using a binary catalyst system composed of an unsymmetrical (S,S,S)-salenCo(III) complex in conjunction with the onium salt PPNY (PPN = bis(triphenylphosphine)iminium, and Y = 2,4-dinitrophenoxy), a highly regioregular ring-opening step was observed with a concomitant 96% retention of configuration at the methine carbon center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.