Abstract

AbstractThe copolymerization of benzofuran and acrylic monomers, such as acrylonitrile, methacrylonitrile, methyl acrylate, and methyl methacrylate, was investigated in the presence of aluminum compounds as complexing agents for acrylic monomers. Among the various kinds of aluminum compound, ethylaluminum sesquichloride is the most suitable for alternating copolymerization, whereas ethoxyaluminum compounds of low acidity allow the incorporation of excess acrylic monomer and dichloride of strong acidity is likely to induce cationic homopolymerization of benzofuran as a side reaction. The equimolar amount of sesquichloride with respect to acrylic monomer is necessary for alternating copolymerization. Azobisisobutylonitrile (AIBN) is an effective initiator but benzoyl peroxide is not. Nuclear magnetic resonance (NMR) of the copolymer indicates that the copolymer is essentially alternating, although some block sequences of acrylic monomer sometimes exist. As a mechanism the copolymerization via a ternary complex of acrylic monomer, aluminum compound, and benzofuran is considered.Free acrylic monomer participates in copolymerization when the amount or acidity of the complexing agent is insufficient. A quantitative relation between monomer and copolymer composition is derived from a scheme based on the copolymerization of the donor monomer‐acceptor monomer complex with free acrylic monomer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.