Abstract

Chimera, the coexistence state of synchronization and non-synchronization, widely exists in complex networks. It has a great potentially explanatory power for the unihemispheric sleep of birds and some mammals, in which the synchronizations of the hemispheres of the cerebral cortex are evolving alternately. In this study, a coupled nonlinear oscillator system with a topology of the modular complex network was constructed to simulate the left and right hemispheres of the brain. The results showed that a stable chimera, an alternating chimera, and a breathing chimera were produced when the coupling strength and connection probability of the left and right hemispheres were changed. Further, we studied the effect of noise on rich synchronous patterns and found that the alternating chimera was robust to Gaussian white noise when the strength was not very large. Finally, our study was extended to a complex network with three sub-networks, and an alternating chimera could exist in two or three sub-networks. Our research provides a deeper insight into the mechanism of brain function like unihemispheric sleep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call