Abstract

The present article discusses the exact observability of the wave equation when the observation subset of the boundary is variable in time. In the one-dimensional case, we prove an equivalent condition for the exact observability, which takes into account only the location in time of the observation. To this end we use Fourier series. Then we investigate the two specific cases of single exchange of the control position, and of exchange at a constant rate. In the multi-dimensional case, we analyse sufficient conditions for the exact observability relying on the multiplier method. In the last section, the multi-dimensional results are applied to specific settings and some connections between the one and multi-dimensional case are discussed; furthermore some open problems are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.