Abstract
SummaryFlexible fiber supercapacitors are promising candidate for power supply of wearable electronics. Fabrication of high-performance fibers is in progress yet challenging. The currently available graphene fibers made from wet-spinning or electro-deposition technologies are far away from practical applications due to their unsatisfactory capacitance. Here we report a facile alternately dipping (AD) method to coat graphene on wire-like substrates. The excellent mechanical properties of the substrate with greatly diverse choices can be carried over to the fiber supercapacitors. Under such guideline, the graphene fiber with a titanium core made by our AD method (AD:Ti@RGO) shows an ultra-high specific capacitance of up to 1,722.1 mF cm−2, which is ∼1,000 times that of wet-spinning- and electro-deposition-fabricated neat graphene fibers and presents the highest specific capacitance to date. With excellent mechanical properties and striking electrochemical performances, the AD:Ti@RGO-based supercapacitors light the path to the next-generation technologies for wearable devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.